3.235 \(\int \frac{x^{11}}{(a+b x^3+c x^6)^{3/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac{\left (-8 a c+3 b^2-2 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{3 c^2 \left (b^2-4 a c\right )}+\frac{2 x^6 \left (2 a+b x^3\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x^3+c x^6}}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{2 c^{5/2}} \]

[Out]

(2*x^6*(2*a + b*x^3))/(3*(b^2 - 4*a*c)*Sqrt[a + b*x^3 + c*x^6]) + ((3*b^2 - 8*a*c - 2*b*c*x^3)*Sqrt[a + b*x^3
+ c*x^6])/(3*c^2*(b^2 - 4*a*c)) - (b*ArcTanh[(b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(2*c^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.110573, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1357, 738, 779, 621, 206} \[ \frac{\left (-8 a c+3 b^2-2 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{3 c^2 \left (b^2-4 a c\right )}+\frac{2 x^6 \left (2 a+b x^3\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x^3+c x^6}}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{2 c^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^11/(a + b*x^3 + c*x^6)^(3/2),x]

[Out]

(2*x^6*(2*a + b*x^3))/(3*(b^2 - 4*a*c)*Sqrt[a + b*x^3 + c*x^6]) + ((3*b^2 - 8*a*c - 2*b*c*x^3)*Sqrt[a + b*x^3
+ c*x^6])/(3*c^2*(b^2 - 4*a*c)) - (b*ArcTanh[(b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(2*c^(5/2))

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 738

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/((p + 1)*(b^2 -
 4*a*c)), Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2*c*d^2*(2*p + 3) + e*(b*e - 2*d*
c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &
& NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, b, c, d,
 e, m, p, x]

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{11}}{\left (a+b x^3+c x^6\right )^{3/2}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^3}{\left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^3\right )\\ &=\frac{2 x^6 \left (2 a+b x^3\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x^3+c x^6}}-\frac{2 \operatorname{Subst}\left (\int \frac{x (4 a+2 b x)}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{3 \left (b^2-4 a c\right )}\\ &=\frac{2 x^6 \left (2 a+b x^3\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x^3+c x^6}}+\frac{\left (3 b^2-8 a c-2 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{3 c^2 \left (b^2-4 a c\right )}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{2 c^2}\\ &=\frac{2 x^6 \left (2 a+b x^3\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x^3+c x^6}}+\frac{\left (3 b^2-8 a c-2 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{3 c^2 \left (b^2-4 a c\right )}-\frac{b \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^3}{\sqrt{a+b x^3+c x^6}}\right )}{c^2}\\ &=\frac{2 x^6 \left (2 a+b x^3\right )}{3 \left (b^2-4 a c\right ) \sqrt{a+b x^3+c x^6}}+\frac{\left (3 b^2-8 a c-2 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{3 c^2 \left (b^2-4 a c\right )}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{2 c^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.11925, size = 137, normalized size = 1. \[ \frac{\frac{2 \sqrt{c} \left (8 a^2 c+a \left (-3 b^2+10 b c x^3+4 c^2 x^6\right )-b^2 x^3 \left (3 b+c x^3\right )\right )}{\sqrt{a+b x^3+c x^6}}+3 b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{6 c^{5/2} \left (4 a c-b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^11/(a + b*x^3 + c*x^6)^(3/2),x]

[Out]

((2*Sqrt[c]*(8*a^2*c - b^2*x^3*(3*b + c*x^3) + a*(-3*b^2 + 10*b*c*x^3 + 4*c^2*x^6)))/Sqrt[a + b*x^3 + c*x^6] +
 3*b*(b^2 - 4*a*c)*ArcTanh[(b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(6*c^(5/2)*(-b^2 + 4*a*c))

________________________________________________________________________________________

Maple [F]  time = 0.036, size = 0, normalized size = 0. \begin{align*} \int{{x}^{11} \left ( c{x}^{6}+b{x}^{3}+a \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/(c*x^6+b*x^3+a)^(3/2),x)

[Out]

int(x^11/(c*x^6+b*x^3+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(c*x^6+b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.99479, size = 981, normalized size = 7.16 \begin{align*} \left [\frac{3 \,{\left ({\left (b^{3} c - 4 \, a b c^{2}\right )} x^{6} + a b^{3} - 4 \, a^{2} b c +{\left (b^{4} - 4 \, a b^{2} c\right )} x^{3}\right )} \sqrt{c} \log \left (-8 \, c^{2} x^{6} - 8 \, b c x^{3} - b^{2} + 4 \, \sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c x^{3} + b\right )} \sqrt{c} - 4 \, a c\right ) + 4 \,{\left ({\left (b^{2} c^{2} - 4 \, a c^{3}\right )} x^{6} + 3 \, a b^{2} c - 8 \, a^{2} c^{2} +{\left (3 \, b^{3} c - 10 \, a b c^{2}\right )} x^{3}\right )} \sqrt{c x^{6} + b x^{3} + a}}{12 \,{\left ({\left (b^{2} c^{4} - 4 \, a c^{5}\right )} x^{6} + a b^{2} c^{3} - 4 \, a^{2} c^{4} +{\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} x^{3}\right )}}, \frac{3 \,{\left ({\left (b^{3} c - 4 \, a b c^{2}\right )} x^{6} + a b^{3} - 4 \, a^{2} b c +{\left (b^{4} - 4 \, a b^{2} c\right )} x^{3}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c x^{3} + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{6} + b c x^{3} + a c\right )}}\right ) + 2 \,{\left ({\left (b^{2} c^{2} - 4 \, a c^{3}\right )} x^{6} + 3 \, a b^{2} c - 8 \, a^{2} c^{2} +{\left (3 \, b^{3} c - 10 \, a b c^{2}\right )} x^{3}\right )} \sqrt{c x^{6} + b x^{3} + a}}{6 \,{\left ({\left (b^{2} c^{4} - 4 \, a c^{5}\right )} x^{6} + a b^{2} c^{3} - 4 \, a^{2} c^{4} +{\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} x^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(c*x^6+b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

[1/12*(3*((b^3*c - 4*a*b*c^2)*x^6 + a*b^3 - 4*a^2*b*c + (b^4 - 4*a*b^2*c)*x^3)*sqrt(c)*log(-8*c^2*x^6 - 8*b*c*
x^3 - b^2 + 4*sqrt(c*x^6 + b*x^3 + a)*(2*c*x^3 + b)*sqrt(c) - 4*a*c) + 4*((b^2*c^2 - 4*a*c^3)*x^6 + 3*a*b^2*c
- 8*a^2*c^2 + (3*b^3*c - 10*a*b*c^2)*x^3)*sqrt(c*x^6 + b*x^3 + a))/((b^2*c^4 - 4*a*c^5)*x^6 + a*b^2*c^3 - 4*a^
2*c^4 + (b^3*c^3 - 4*a*b*c^4)*x^3), 1/6*(3*((b^3*c - 4*a*b*c^2)*x^6 + a*b^3 - 4*a^2*b*c + (b^4 - 4*a*b^2*c)*x^
3)*sqrt(-c)*arctan(1/2*sqrt(c*x^6 + b*x^3 + a)*(2*c*x^3 + b)*sqrt(-c)/(c^2*x^6 + b*c*x^3 + a*c)) + 2*((b^2*c^2
 - 4*a*c^3)*x^6 + 3*a*b^2*c - 8*a^2*c^2 + (3*b^3*c - 10*a*b*c^2)*x^3)*sqrt(c*x^6 + b*x^3 + a))/((b^2*c^4 - 4*a
*c^5)*x^6 + a*b^2*c^3 - 4*a^2*c^4 + (b^3*c^3 - 4*a*b*c^4)*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{11}}{\left (a + b x^{3} + c x^{6}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**11/(c*x**6+b*x**3+a)**(3/2),x)

[Out]

Integral(x**11/(a + b*x**3 + c*x**6)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{11}}{{\left (c x^{6} + b x^{3} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(c*x^6+b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate(x^11/(c*x^6 + b*x^3 + a)^(3/2), x)